
Program Recognition System for C
A Novel Take on Use of Plans and Clichés for Program Understanding

Manasi Deshmukh , Rohan Ingale , Rajat Doshi , Priyanka Sathe
Department of Computer Engineering

SKNCOE, University of Pune, Pune, India.

Abstract—This paper presents an approach for deriving an
English language description of a C program directly from the
source code. Two levels of translation are presented: cliché
extraction, to identify commonly used programming
constructs, and concept abstraction, to deduce the purpose of
the program. Concept abstraction can serve as a basis for
intelligent query support for providing relevant
documentation. In this paper, we compare prominent works
on program understanding systems, and propose an efficient
method for plan representation and storage of plans in plan
library, as an alternate approach to program recognition
using flow graph parsing.

Keywords—clichés, documentation, plans, program
understanding

I. INTRODUCTION
Program recognition falls under both Software

Engineering and Artificial Intelligence. In order to
understand a program, a programmer attempts to recognize
familiar parts, called clichés, and hierarchically builds an
understanding of the entire program based on these parts.
For example, a programmer may recognize that a bubble
sort program is being used to order integers. The data
structure used to store these integer elements may be
recognized as having been implemented as an array of
entries. This method to understand programs, called
‘analysis by inspection’, has been developed by Rich.
‘Program Recognition’ encompasses identification of
commonly used algorithmic fragments, called clichés, and
data structures in a program. Such a program recognition
system is schematically shown in Fig. 1. Here, we present
a system for C which performs program recognition
automatically. The system takes a source code as input and
generates a hierarchical description of clichés and data
structures of which the code is constructed. Such a
description may be useful in activities such as debugging,
modifying, maintaining and documenting the program.
Aside from its various practical applications, program
recognition is a worthwhile concept to study from a
theoretical standpoint in Artificial Intelligence. It can help
us model how programmers understand programs based on
their accumulated experience in programming. It is also a
problem in which the representation of knowledge is the
key to the efficiency and simplicity of the techniques used
to solve the problem.

 Program

Fig. 1. A simple program understanding system

II. PROGRAM UNDERSTANDING SYSTEMS
 Work on the development of program understanding
systems had begun since the early 1970s. One of the first
systems to tackle the problem of program recognition was
developed in the early 1970s by Gregory Ruth. Some of
the program understanding systems that were developed in
the 1980s are PUDSY, LAURA, PROUST and TALUS.
The ones developed in 1990s are Recognizer, PAT,
BAL/SRW and DUDU. The latest systems developed in
2000s are Conceiver and Conceiver++. We will discuss and
compare these systems below.

A. Ruth’s System

One of the first systems to highlight the area of program
understanding was developed by Gregory Ruth in the early
1970s. This system took the program code and a task
description of the code as its input. It then tried to deduce
the algorithm implemented in the code. This was achieved
by matching the input code against several implementation
patterns, which the system stored as a library. These
implementation patterns were in the form of a set of
characteristics about the code.

B. PUDSY

 PUDSY was developed at the University of SUSSEX in
1980s. Apart from the source code, PUDSY took, as input,
information about the purpose of the code that it was
analyzing, in the form of program specification, which
described the effects of the code. This system did not use
this description for searching clichés. Rather, it analyzed
the program and then compared the results of the analysis
to the specification. Differences resulting from such a
comparison were pointed out as bugs. PUDSY was used to
analyze Pascal programs. It first used heuristics to segment
a code into chunks, which were manageable units of code,
such as loops. It then described the flow of information
between these chunks by producing assertions about the
values of the output variables of each chunk. These
assertions were produced by recognizing familiar patterns
of statements, called schemas, in the chunk. Each schema
was related to a set of assertions describing their effects on
the involved variables. For unrecognized chunks, assertions
were produced by symbolic evaluation.

C. LAURA

 Anne Adam and Jean-Pierre Laurent developed LAURA
at the University Of Caen, France in 1980s. LAURA
received information about the program to be analyzed in
the form of a model code, which correctly performed the
task that the code was intended to do. It then compared the
graphs of these two codes and treated mismatches as bugs.

USER

PLAN BASE

SYSTEM

Description

Manasi Deshmukh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3376-3380

www.ijcsit.com 3376

As nodes of the graphs were really statements of the code,
the graph matching was essentially statement-to-statement
matching. LAURA differed from PUDSY in that it
represented source codes as graphs. This representation
allowed LAURA to abstract the syntactic features of the
programming language. Plans were not used during the
process of understanding. Instead, programs were
transformed to make them more reliable for comparison.

D. PROUST

 PROUST was a program for debugging Pascal programs
written by novice programmers Johnson and Soloway in
1985 []. PROUST required a program and a non-
algorithmic description of the program requirements as
input. It produced the most likely mapping between
requirements and the program as output. It used plans to
represent stereotypical code fragments. Plans were
represented as templates that consisted of three items: a
Pascal statement, a sub-goal to be implemented as a set of
statements, and a reference to a component of another plan.
Plans could also contain slots indicating assertions about
the plan. The Prior-Goals slot indicated other goals that had
to be met before this plan could be activated, whereas the
Posterior-Goals slot indicated goals to be added to the
agenda after the plan is matched. Thus, these slots were
used to control the goal-processing order when PROUST
was executed.

E. TALUS

 TALUS was developed at University of Texas in 1986.
It was designed to analyze programs, written in LISP,
involving recursive definition of data structures. The main
purpose of this system was to support automatic debugging
of programs. TALUS was required to first recognize the
input program before it could associate it with known
reference functions. It also required a precise description of
the problem to be recognized. TALUS separated
knowledge representation into three levels: tasks,
algorithms and functions. Tasks were basic programming
assignments, generally given to students. TALUS had 18
tasks, each at a comparable level of abstraction to ‘write a
function returning a list of all the atoms in a tree’. TALUS
assumed that the tasks were known prior to their execution.
TALUS performed four steps to analyze students’
programs: code simplification, algorithm recognition, bug
detection and code correction. Code simplification put the
program in If-Normal form and transformed it into a
simpler Lisp dialect. In algorithm recognition, TALUS
selected the algorithm that matched the input code. Once
the algorithm is selected, reference functions were
associated with the program’s functions. In bug detection,
TALUS determined whether the student’s program and the
reference program were equivalent, using symbolic
evaluation. If no equivalence existed, TALUS would try to
infer which bugs were present in the student’s program.
Symbolic evaluation considered the program in If-Normal
form. The system derived conditions necessary to reach a
leaf for the student’s function and the reference function,
and grouped them into cases. It then took the cases derived
from the reference functions, and applied them to the input
function, and vice versa.

F. Recognizer

 The Recognizer was developed at MIT Artificial
Intelligence Laboratory as a part of the Programmer’s
Apprentice Project. The Recognizer only required the
source code in order to recognize the familiar algorithmic
clichés, unlike the previously described systems. It
performed four main activities. Firstly, it analyzed the
source code. Secondly, it converted the program plan into
its corresponding flow graph. Thirdly, it parsed the flow
graph with a grammar derived from a library of clichés.
Lastly, it checked constraints on the matched flow graph.
The nodes of the flow graph would represent operations
and its edges would represent data flow. The recognizer
performed bottom-up parsing of the input code to recognize
clichés, and from these built an understanding of the entire
program. The cliché library used by Recognizer was
originally developed by Charles Rich to support the
Programmer’s Apprentice. This library provided taxonomy
of standard computational fragments and data structures
represented as plans. There were two forms of clichés,
namely, plans and implementation overlays. Plans were
used to represent data structures and algorithms. Plan nodes
consisted of primitive forms, which were irreducible, or
nodes corresponding to other plans. Implementation
overlays represented alternative ways of expressing the
same concept, usually from an abstract into a concrete
form.

G. PAT

 PAT (Program Analysis Tool), like Recognizer,
operated on code only. It converted the source code into a
set of programming language independent objects, called
events, using a parser. Then, using the event base, it
recognized higher level events that represented function-
like concepts. After higher level events were recognized,
they were added to the event set. The process of
recognition was repeated until no more higher level events
were recognized. The final event set was presented to the
user. This set presented the purpose of the program. A
deductive-inference-rule engine was the main component
of PAT. This engine used a library of program plans, stored
as inference-rules in the plan base. These were used to
derive new, high level events. A plan parser was used to
parse the plans. These plans contained the understanding,
paraphrasing, and debugging knowledge. When a new
event was generated, it triggered other rules to fire, causing
the generation of more events.

H. BAL/SRW

 BAL/SRW was an interactive knowledge-based
environment which supported the process of recapturing
and uncovering Assembly language logic and design of the
program in order to reengineer it. BAL/SRW required only
the source code as its input. The output from the system
could merge with the new specification within a CASE tool
in the forward phase of system re-engineering. BAL/SRW
first performed a quick analysis for the Assembly language
code in order to collect primary information about it. After
information collection, the program was parsed in order to
build the program knowledge base. The obtained

Manasi Deshmukh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3376-3380

www.ijcsit.com 3377

knowledge base represented the program information in the
form of objects. Control flow graph of the program was
derived using a control flow generator. The plan
representation used by BAL/SRW used templates that were
assembly fragments of the source code. The control flow
was implicitly specified by the order of the templates.

I. DUDU

 DUDU (Debugging Using Device Understanding) was
developed for the purpose of debugging in 1991 at Ohio
State University. Its representation of clichés was a text-
based representation of plans that included goals,
components for achieving them and casual links to show
how the components achieve the goals. The functional
representation was used to specify which parts of the
program’s clichés are supported by which parts of its plan
representation. An important advantage of this
representation was that it provided information which could
make it easier to tolerate variation in how a function was
achieved. As it explicitly described the purpose of each part
of a cliché in the context of a larger of correctness, if some
part of the cliché did not match the program, the functional
representation described the function of that part. It thus
made it possible to prove that the mismatch portion of the
program still achieved this function.

J. Conceiver

Conceiver is a program understanding system which
consists of five components: user interface, parser,
understanding inference, document generator and plan
base. The parser performs the task of translating the source
program into a language independent representation to
generate corresponding plans, which are then stored in the
plan base. Once the language independent representation is
generated, the understanding inference performs
recognition. The recognition process starts with recognition
of individual statements and then combines all such
matches to perform comparison with the plans in the plan
base. After plan matches are found, the documentation
generator produces documentation by considering the
hierarchy of recognized plans.

K. Conceiver++

Conceiver++ is program recognition for source codes
written in JAVA. It is a line by line program understanding
system which generates a description for each line of input
code. The main task of this system is to find plans from the
plan base that match the statements in the source code. If a
match is found then the corresponding explanation will be
generated. Else, the debugger in the system tries to find
errors in the code that resulted in no match being found.
This system takes a program code as input. The input
program is parsed and transformed into an abstract syntax
tree. In the abstract syntax tree, each node represents a
statement from the code. These nodes are then used for
construction of a control flow graph which shows the
control and data flow of the source code. The control flow
graph is then compared with the plans in the plan base to
generate the description.

III. OUR APPROACH
 We have attempted to simplify the process of

program understanding by using simpler and easy-to-use
representation of plans. The structure or the underlying
framework of a C program can be recognized by removing
unnecessary programming details and retaining only its
clichés. An outline of the input source code, thus obtained,
can then be adorned with necessary and sufficient
information to understand the purpose of the code. Let us
know take a look at the different phases an input program
will undergo to finally generate an English language
description of itself. This is schematically shown in Fig. 2.

Fig. 2. System Architecture

A. Plan String Generation

The system takes only the source program as input. This
program is parsed to generate tables in Microsoft Access
2007. These tables are as shown in Example (1).
Information about clichés, i.e. all programming constructs,
user defined functions and identifiers, gets stored in these
tables. In the next step, this tabular information is
processed to derive the plan strings.

Plan string is basically an outline of the input program
in terms of the clichés used. These clichés include
functions, loops (for, while, do while) and branch
statements (if, if-else, switch). To generate a proper outline
of the input program, relative positioning of constructs is
represented by their ‘degree of nesting’. The ‘degree of
nesting’ is a natural number which reflects the extent to
which a block or a construct is contained within the
outermost block or construct.

B. Flexible Plan

The system’s parser identifies all the operations,
expressions and assignment statements in the input source
code and stores them in a separate table. All variable
dependencies in these statements are eliminated. These
generalized statements are called plans. The plan library
already stores known operations in the same generalized
format. Plans obtained from the input source code are then
searched for in the plan library with the help of the code’s
plan string. As the length of operation statements is
variable, so will be the length of corresponding plans. To
meet this variability, we make use of MongoDB for the
storage of plans. MongoDB is an open-source document
database which allows the construction of dynamic

END
USER

PARSER DATABASE

PLAN STRING
GENERATOR

DESCRIPTION
GENERATOR

DOCUMENTATION
GENERATOR

U
S
E
R

I
N
T
E
R
F
A
C
E

PLAN
LIBRARY

END
USER

Manasi Deshmukh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3376-3380

www.ijcsit.com 3378

schemas and thus helps in the storage of flexible length
plans.

C. Plan Matching

The generalized statements obtained after processing the
input code are then compared with the plans present in the
plan library. The number of comparisons is limited by
selecting only those plans from the plan library whose plan
string matches the plan string of the input code. Once such
plans are selected, comparison is performed and the
description corresponding to the matched plan is used as
the functionality description for that particular block of
code.

IV. ILLUSTRATIVE EXAMPLE
A. Plan String Generation
 Here we explain how the system produces a description
of a C code for selection sort.

Example 1:

//Selection Sort

#include<stdio.h>
int main()
{
 int s,i,j,temp,a[20];
 printf("Enter total elements: ");
 scanf("%d",&s);
 printf("Enter %d elements: ",s);
 for(i=0;i<s;i++)
 scanf("%d",&a[i]);
 for(i=0;i<s;i++)
 {
 for(j=i+1;j<s;j++)
 {
 if(a[i]>a[j])
 {
 temp=a[i];
 a[i]=a[j];
 a[j]=temp;
 }
 }
 }
 printf("After sorting is: ");
 for(i=0;i<s;i++)
 printf(" %d",a[i]);
 return 0;

}

TABLE I. ASSIGNMENT TABLE
Assignment Table

Statement ID Line Number Statement

0 20 temp = a[i]

1 21 a[i] = a[j]

2 22 a[j] = temp

TABLE II. FUNCTION TABLE
Function Table

Function
ID

Function
Name

Return
Type

No. of
Parameters

Start
Line
No.

End
Line
No.

0 main int 0 2 32

TABLE III. IDENTIFIER DECLARATION TABLE
Identifier Declaration Table

Var
ID

 Name
Initial
Value

Scope Type
Identifier
Pointer

Line
Number

0 s 0 Main int -1 5

1 i 0 Main int -1 5

2 j 0 Main int -1 5

3 temp 0 Main int -1 5

4 a[20] 0 Main int -1 5

TABLE IV. INCLUDE TABLE

Include Table
Include

ID
File

Name
Line
No.

0 stdio 1

TABLE V. LOOP TABLE

Loop Table

Loop
ID

Name
Start
Line
No.

End
Line
No.

0 For 11 24

1 For 14 25

2 For 16 24

3 For 28 31

TABLE VI. PLAN STRING TABLE

Plan String Table

Plan
No.

Plan String

0 main/for/for//for///if/for

The number of slashes in the plan string denotes the degree
of nesting of the construct that follows.

B. Plan Matching
After the plan string is produced, we consider the
operations that are taking place within the recognized
constructs. The generalized operation statements are
compared with those stored in the following table which
forms the core of the plan library.

TABLE VII. PLAN MATCHER TABLE

Plan Matcher Table
Plan String Match Description

main/for/for//for///if/for scan|
loop|C1|0|C1|<|T1|C1|I1|
loop|C2|C1+1|C2|<|T1|I1|

if|AR[C1]|>|AR[C2]|
swap|AR[C1]|AR[C2]|

print

Selection Sort

Manasi Deshmukh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3376-3380

www.ijcsit.com 3379

The program’s plan string is compared with those listed in
the table. The result of this comparison may give more than
one perfect matches. For all such matches, we check
whether all the generalized operation statements are present
in the ‘Match’ field, in the same order. When such a match
if found, its corresponding description is adorned with
English language phrases and is output to the user. In case
no match is found, the user is prompted with appropriate
message to either make changes in his code or to verify the
code for its syntax.
In the above table, C1, C2, T1 and AR denote the
generalized variables; scan, loop, if, swap, print denote the
generalized operations; I1 is used to denote increment by 1;
0 and C1+1 following C1 and C2 respectively, denote the
initial value of variables C1 and C2; C1<T1 and C2<T1 are
loop conditions; separators denote the flexible storage in
MongoDB which allows the ‘Match’ field to be as long as
required.
Operations such as swap and scan are recognized using
another table that stored commonly used operations in the
same generalized format as used in the above table. If an
operation is new to the system, the user will be prompted to
add it to the library along with its descriptive notation. This
notation is used to replace the entire corresponding
operation into a word or two, thus trimming the program.

ACKNOWLEDGMENT
 We extend our sincere thanks and deep gratitude to our
project guide Prof. Mrs. Vaishali S. Deshmukh for her
immensely valuable advice and guidance. We sincerely
thank our Head of Department, Prof. Parikshit N. Mahalle,
for his precious advice in the early stages of project
selection. Lastly, we wish to thank our parents, families and
friends for their patience and support.

REFERENCES
[1] G. R. Ruth, “Analysis of Algorithm Implementations,” Technical

Report 130, MIT Project Mac, 1974.
[2] R. C. Waters, “Automated Analysis of the Logical Structure

of Programs,” Technical Report 492, MIT Artificial Intelligence
Lab., December 1978.

[3] H. E. Shrobe, “Dependency Directed Reasoning for Complex
Program Understanding,” Technical Report 503, MIT Artificial
Intelligence Lab., April 1979.

[4] R. C. Waters, “A Method for Analyzing Loop Programs,” IEEE
Transactions on Software Engineering, vol. 5, no. 3, pp. 237-247,
May 1979.

[5] F. J. Lukey, “Understanding and Debugging Programs,”
International Journal of Man-Machine Studies, vol. 12, pp. 189-202,
1980.

[6] Adam and J. Laurent, “LAURA: A System to Debug Student
Programs,”
Arificial Intelligence, vol. 15, pp. 75-122, 1980.

[7] C. Rich, “Inspection Methods in Programming,” Technical Report
604, MIT Artificial Intelligence Lab., June 1981.

[8] C. A. Rich, “A Formal Representation for Plans in the
Programmer’s Apprentice,” in Proc. 7th International Joint
Conference on Artificial Intelligence, Vancouver, British Columbia,
Canada, August 1981, pp.1044-1052. Reprinted in M. Brodie, J.
Mylopoulus, and J. Schmidt, editors, “On Conceptual Modelling,”
Springer Verlag, 1984 and in C. Rich and R. C. Waters, editors,
“Readings in Artificial Intelligence and Software Engineering,”
Morgan Kaufmann, 1986.

[9] R. C. Waters, “The Programmer's Apprentice: Knowledge-
Based Program Editing,” IEEE Transactions on Software
Engineering, vol. 8, no. 1, January 1982.

[10] D. Scott Cyphers, “Programming Clichés and Cliché
Extraction,”
Working Paper 223, MIT Artificial Intelligence Lab., February 1982.

[11] D. C. Brotsky, “An Algorithm for Parsing Flow Graphs,”
Technical
Report 704, MIT Artificial Intelligence Lab., March 1984.

[12] W. Lewis Johnson and Elliot Soloway, “PROUST: Knowledge-
Based Program Understanding,” IEEE 7th Conference on Software
Engineering, Orlando, Florida, 1984, pp. 369-386.

[13] W. Lewis Johnson and E. Soloway, “PROUST: Knowlegde-Based
Program Understanding,” IEEE Transactions on Software
Engineering, vol. 11, no. 3, 1985.

[14] R. C. Waters, “KBEmacs: A Step Toward the
Programmer's Apprentice,” Technical Report 753, MIT Artificial
Intelligence Lab., May 1985.

[15] C. Rich, “The Layered Architecture of a System for Reasoning
about Programs,” in Proc. 9th International Joint Conference on
Artificial Intelligence, Los Angeles, CA, August 1985, pp. 540-546.

[16] R. C. Waters, “The Programmer's Apprentice: A session
with
KBEmacs,” IEEE Transactions on Software Engineering, vol. 11,
no.
11, pp. 1296-1320, November 1985.

[17] W. R. Murray, “Heuristic and Formal Methods in Automatic
Program Debugging,” in Proc. 9th International Joint Conference
on Artificial Intelligence, Los Angeles, CA, August 1985, pp. 15-19.

[18] W. R. Murray, “Automatic Program Debugging for Intelligent
Tutoring Systems,” Technical Report 27, University of Texas
at Austin, Computer Science Dept., June 1986.

[19] L. M. Wills, “Automated Program Recignition,” Technical Report
904, MIT Artificial Intelligence Lab., February 1987.

[20] C. Rich, “Inspection Methods in Programming: Cliches and
Plans,”
Memo 1005, MIT Artificial Intelligence Lab., December 1987.

[21] C. Rich and R. C. Waters, “The Programmer’s Apprentice: A
Research Overview,” IEEE Computer, vol. 21, no. 11, pp. 10-25,
November 1988. Also published as Memo 1004, MIT Artificial
Intelligence Lab., November 1987.

[22] A. V. Aho, R. Sethi, and J. D. Ullman, “Compiler Principles,
Techniques, and Tools,” Addison-Wesley, 1987.

[23] L. M. Wills, “Automated Program Recognition: A
feasibility demonstration,” Artificial Intelligence, vol. 45, no. 1-2,
pp. 113-172,
1990.

[24] C. Rich and L. Wills, “Recognizing a Program's Design: A
Graph- Parsing Approach,” IEEE Software, vol. 7, no. 1, pp. 82-
89, January
1990.

[25] M. T. Harandi and J. Q. Ning, “Knowledge-based Program
Analysis,”
IEEE Software, January 1990.

[26] D. Allemang, “Understanding Programs as Devices,” Ph.D.
Dissertation,
Ohio State University, 1990.

[27] W. Kozaczynski, E. Liongosari, and J. Ning, “BAL/SRW:
An Assembler Re-engineering Workbench,” Information and
Software Technology, September 1991.

[28] A. Engberts, W. Kozaczynski, and J. Q. Ning, “Concept
Recognition Based Program Transformation,” Conference on
Software Maintenance, October 1991.

[29] L. M. Wills, “Automated Program Recognition by Graph
Parsing,”
Technical Report 1358, MIT Artificial Intelligence Lab., July 1992.

[30] W. Kozaczynski, J. Ning, and A. Engberts, “Program Concept
Recognition and Transformation,” IEEE Transactions on Software
Engineering, vol. 18, no. 12, 1992.

[31] Abdullah Mohd. Zin, and Hani Ahmed Al-Omari,
“Implementation of Conceiver: Not Just Another Program
Understanding System,” Jumal Antarabangsa (Teknologi
Maklumat), vol. 3, pp. 73-87, 2002.

[32] Nor Fazlida Mohd. Sani, and Abdullah Mohd. Zin,
“Implementation of Conceiver++ : An Object Oriented Program
Understanding System,” Journal of Computer Science, vol. 5, no.
12, pp. 1009-1019, 2009

.

Manasi Deshmukh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3376-3380

www.ijcsit.com 3380

